Профессор ВИФШ Рожанский В.А. объясняет как корейские термоядерщики на 20 секунд зажгли на Земле искусственное Солнце

25 Января 2021
32
 Версия для печати

Корейские термоядерщики на 20 секунд зажгли на Земле искусственное Солнце

Разбираемся с экспертом, профессором ВИФШ Рожанским В.А. - почему это круто и когда человечество получит неисчерпаемый источник “зеленой” энергии

На днях корейские термоядерщики установили новый мировой рекорд: на сверхпроводящем токамаке KSTAR (его еще называют корейское искусственное солнце, поскольку наша звезда светит и греет именно за счет термоядерной реакции) они в течении 20 секунд удерживали плазму температурой выше 100 миллионов градусов. С одной стороны, это круто, потому что более чем вдвое превышен предыдущий рекорд - в 2019 году он составлял 8 секунд. С другой стороны - непонятно, что это такое и как оно нам в хозяйстве пригодится?

Попробуем ответить на наивные вопросы с помощью Владимира Рожанского, профессора Высшей инженерно-физической школы Санкт-Петербургского политехнического университета Петра Великого (СПбПУ - участник Проекта 5-100, это программа повышения конкурентоспособности ведущих российских университетов).

1. Почему 20 секунд это круто?

Комментарий эксперта: Чтобы зажечь термоядерную реакцию с положительным выходом энергии (когда полезная энергия термоядерного синтеза превышает затраты на нагрев плазмы) нужно иметь три достаточно высоких параметра:

- температура плазмы должна превышать 100 млн градусов

- концентрация плазмы должна тоже быть достаточной

- время удержания энергии (время, которое плазма будет оставаться горячей при выключении источников нагрева) также должно быть достаточно большим.

На корейском токамаке KSTAR, как и на других современных токамаках выполнены пока только первые два условия, а время удержания - недостаточно. На сегодняшний день 20 секунд на KSTAR с его относительно небольшими размерами - это много.

2. Работы над созданием термоядерного реактора начались еще полвека назад. Почему за это время не удалось создать действующую установку?

Комментарий эксперта: 50-летняя история управляемого термоядерного синтеза связана в значительной степени с проблемой удержания плазмы в магнитном поле. В ней развиваются многочисленные неустойчивости, которые переводят плазму в турбулентное состояние, вызывают уход энергии из объема реактора и падение времени удержания. Более 50 лет понадобилось человечеству на решение этой проблемы. Один из способов - увеличение размеров реактора, так как время удержания плазмы растет пропорционально квадрату размеров. Самый большой термоядерный реактор ИТЭР будет иметь радиус около 6 метров. Ну и, конечно, разработаны многие новые технологии, которых мы не имели 50 лет назад.

3. Почему корейцам удалось продвинуться вперед? Какую фишку они применили?

Комментарий эксперта: При работе необходимо поддерживать сильное магнитное поле за счет токов в катушках реактора. При этом в обычных катушках происходят огромные потери энергии. Чтобы этого избежать, надо использовать сверхпроводящие материалы для катушек, работающих почти при нулевых температурах по Кельвину. Такая технология используется на KSTAR . Кроме этого, удалось создать так называемый внутренний транспортный барьер с подавленной турбулентностью, что привело к общему улучшению удержания.

4. Какой эффект может быть от термоядерного реактора, если его удастся создать?

Комментарий эксперта: Человечество получит практически неисчерпаемую «зеленую» энергию.

5. Чем термоядерные реакторы лучше, чем реакторы на действующих АЭС, которые используют реакцию не синтеза, а деления?

Комментарий эксперта: Постепенно приходит осознание того факта, что атомная энергетика на реакциях деления, не может быть использована в перспективе из-за экологических проблем, связанных с утилизации отходов, возможных аварий и т.д. Да и ее коммерческая привлекательность существенно падает из-за расходов необходимых при выводе реакторов из эксплуатации. Не случайно многие страны, например Германия, постепенно отказываются от атомной энергетики. Термоядерная энергетика свободна от этих недостатков.

6. В каком временном горизонте стоит ждать появления работающего устройства?

Комментарий эксперта: Первая плазма на термоядерном реакторе ИТЭР должна быть получена осенью 2025 года. Думаю, затем уйдет еще 10-15 лет работы реактора, чтобы к концу этого периода получить самоподдерживающуюся термоядерную реакцию.

 

Материал подготовлен KP